Drinking baking soda has been proven to reduce or eliminate the spread of breast cancer to the lungs, brain and bone, but too much of it can damage normal organs.
By Steve Delgado, College of Engineering, March 30, 2012 UA NEWS
A $2 million grant from the National Institutes of Health will enable University of Arizona biomedical engineering researchers to improve the way doctors measure the effectiveness of drinking baking soda to fight breast cancer.
The grant will be used to help refine a new magnetic resonance imaging method for measuring pH, or acid content, of a tumor that has been discovered in a patient but not yet treated.
By measuring the acid content of the tumor, doctors can monitor the effectiveness of personalized treatments such as baking soda on both tumors and healthy tissue, and even predict the effectiveness of chemotherapies before the patient starts the medication.
Drinking baking soda has been proven to reduce or eliminate the spread of breast cancer to the lungs, brain and bone, but too much baking soda can also damage normal organs.
“In other words, this test is designed to lead to personalized medicine for cancer patients, by optimizing the therapy to each individual,” said Mark “Marty” Pagel, UA associate professor of biomedical engineering and lead researcher on the project.
Just as people feel the burn from lactic acid produced in their muscles during rigorous exercise, tumors also produce lactic acid when they are actively growing, Pagel said. This acid destroys surrounding tissue, which allows the tumor to grow, invade surrounding areas, and metastasize to other organs in the body. “The acid also provides resistance to common chemotherapies,” Pagel said.
“Measuring the pH in a tumor is essential, because some drugs only work at the right pH,” said Jennifer Barton, professor and head of UA biomedical engineering. “Patients can actually change their body’s pH to make their cancer drugs more effective – it can be as simple as drinking baking soda – but this process has to be carefully monitored.”
The goal of the research is to prove that this unique and innovative MRI tumor measurement technique will help improve, and in some cases save, the lives of women with breast cancer.